Spine loading at different lumbar levels during pushing and pulling.

نویسندگان

  • Gregory G Knapik
  • William S Marras
چکیده

As the nature of many materials handling tasks have begun to change from lifting to pushing and pulling, it is important that one understands the biomechanical nature of the risk to which the lumbar spine is exposed. Most previous assessments of push-pull tasks have employed models that may not be sensitive enough to consider the effects of the antagonistic cocontraction occurring during complex pushing and pulling motions in understanding the risk to the spine and the few that have considered the impact of cocontraction only consider spine load at one lumbar level. This study used an electromyography-assisted biomechanical model sensitive to complex motions to assess spine loadings throughout the lumbar spine as 10 males and 10 females pushed and pulled loads at three different handle heights and of three different load magnitudes. Pulling induced greater spine compressive loads than pushing, whereas the reverse was true for shear loads at the different lumbar levels. The results indicate that, under these conditions, anterior-posterior (A/P) shear loads were of sufficient magnitude to be of concern especially at the upper lumbar levels. Pushing and pulling loads equivalent to 20% of body weight appeared to be the limit of acceptable exertions, while pulling at low and medium handle heights (50% and 65% of stature) minimised A/P shear. These findings provide insight to the nature of spine loads and their potential risk to the low back during modern exertions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.

BACKGROUND Low back loading and risk associated with pushing activities have been poorly understood. Previous studies have demonstrated that increases in anterior/posterior shear forces are primarily initiated by antagonistic coactivity within the torso. Yet, few studies have considered the range of activities that might contribute to the antagonistic coactivation and subsequent spine loading. ...

متن کامل

Evaluation of the Loading of Neck and Shoulder Musculature in Overhead Pushing and Pulling Exertions

Despite substantial epidemiological evidence relating overhead exertions with work-related musculoskeletal disorders (WMSD) of the neck, effects of such exertions on the loading of neck or cervical spine musculature are not well understood. In this study, the effects of overhead pushing and pulling exertions on the loading of the cervical spine were evaluated using electromyography (EMG) and su...

متن کامل

Tolerance of the lumbar spine to shear: a review and recommended exposure limits.

BACKGROUND The lumbar spine may experience significant shear forces during occupational tasks due to the force of gravity acting on the upper body when bending the trunk forward, or when performing tasks involving pushing or pulling. Shear force limits of 1000 N and 500 N have been recommended by previous authors for maximum permissible limit and action limit, respectively. METHODS The presen...

متن کامل

Wheelchair pushing and turning: lumbar spine and shoulder loads and recommended limits.

The objective of this study was to determine how simulated manual wheelchair pushing influences biomechanical loading to the lumbar spine and shoulders. Sixty-two subjects performed simulated wheelchair pushing and turning in a laboratory. An electromyography-assisted biomechanical model was used to estimate spinal loads. Moments at the shoulder joint, external hand forces and net turning torqu...

متن کامل

Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ergonomics

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 2009